

Year 12 Maths Methods Test 1, 2017

Differentiation Techniques and Applications of Differentiation

Name:	

Section 1: Resource Free QUESTION 1 [3, 1, 2, 4 marks]

27 marks

a) If
$$f(x) = \frac{1}{2x^2}$$
, evaluate $f''(-1)$

$$f'(x) = -x^{-3}$$

 $f''(x) = 3x^{-4} = \frac{3}{x^4}$

b) Find g'(x), if
$$g(x) = (1+2x-2x^3)(x^2-1)$$
; do not simplify your answer $(x^2-1)(2-6x^2)+(1+2x-2x^3)(2x)$

c) Use the chain rule to differentiate
$$\frac{2}{(x^3+2)^4}$$
; apply basic simplification

$$-8(x^{3}+2)^{-5}(3x^{2})$$

$$= -\frac{24x^{2}}{(x^{3}+2)^{5}}$$

d) The 1st and 2nd derivative function of a function is shown. The x-coordinates of points where various features of the original function occur are shown below. State the nature of each of these points:

QUESTION 2 [3, 3 marks]

Consider the graph of $f(x) = \frac{3x-9}{x^2-x-2}$ shown below with a local minimum at A(1, 3)

a) Show that
$$f'(x) = \frac{-3(x-1)(x-5)}{(x^2-x-2)^2}$$
 $y = \frac{3}{\sqrt{x^2-x^2-2}}$

$$\frac{dy}{dx} = \frac{(x^2 - x - 2)^3 - (3x - 9)(2x - 1)}{(x^2 - x - 2)^2}$$

$$= 3x^2 - 3x - 6 - 6x^2 + 3x + 18x - 9 / (x^2 - x - 2)^2$$

$$= -3x^2 + 18x - 15 / (x^2 - x - 2)^2$$

$$= -3(x-1)(x-5)$$

$$(x^2-2-2)^2$$

$$(x^2-2-2)$$

b) Hence, or otherwise, determine the coordinates of the local maximum value of f(x).

$$(x-1)(x-5)=0$$

$$x=1$$
 $x=5$

$$\frac{3(5)-9}{(5)^2-5-2} = \frac{6}{18} = \frac{1}{3}$$

QUESTION 3 [3 marks]

The volume of a solid sphere is given by $\frac{4}{3}\pi r^3$ where r is the radius. If the radius is increased from 2 cm to 2.1 cm, use the incremental formula to find the approximate increase in volume. Give your answer simplified in terms of π .

QUESTION 4 [1,2,3, 2 marks]

The motion of a body is determined by $x = t^3 - 3t^2 - 9t + 4$, where x is measured in cm and t is in seconds. Find

a) The velocity-time equation

b) The acceleration-time equation

c) The time when the body is at rest

$$0 = 3(t^2 - 2t - 3)$$
 $v = 0$ $V = 0$

d) The acceleration when the body is at rest

$$a = 6(3) - 6$$
 $a = 12 \text{ cm/s}^2$

Year 12 Maths Methods Test 1, 2017

Differentiation Techniques and Applications of Differentiation

Name:				
	25		25	
		-	The second secon	

Resource Rich

30 marks

QUESTION 5 [4 marks]

The graph of the function with rule $y = \frac{k}{2(x^3 + 1)}$ has gradient 1 when x = 1. Find the value of k.

$$\frac{dy}{dx} = \frac{1}{2} k (x^{3} + 1)^{-2} (3x^{2})$$

$$= \frac{3}{2} (x^{3} + 1)^{2}$$

$$= \frac{3(1)^{2} k}{2(1^{3} + 1)^{2}}$$

$$= \frac{3}{8} k$$

$$= \frac{8}{3}$$
OHESTION 6 [1.1.1.2 marks]

[1, 1, 1, 2 marks]

A flower bed is to be L-shaped, as shown in the diagram. Its perimeter is 48 m

a) Write down an expression for the area, A m², in terms of y and x

b) Find y in terms of x

$$6y + 4x = 48$$

 $y = (48 - 4x)$

c) Write down an expression for A in terms of x.

d) Find the values of x and y that give the maximum area

$$\frac{dA}{dx} = -16(x - (16x - 96))$$

$$\frac{-(16x - 96)}{3}$$

$$x = 6$$

$$x = 6$$

QUESTION 7 [3 marks]

A coat of paint of thickness 0.05 cm is to be applied uniformly to the faces of a cube of edge 30 cm. Use calculus methods to find the amount of paint required for the job.

$$V = L^{3}$$
 $dV = 3L^{2}$
 $\delta V = 3L^{2} \delta L$
 $\delta V = 3(30)^{2} (a.66)$
 $\delta V = 270cm^{3}$
 $dV = 3L^{2} \delta L$
 $dV = 3L^{2}$

QUESTION 8 [4 marks]

The length of time, in seconds, a certain individual takes to learn a list of n items is approximated by $f(x) = 4n\sqrt{n-4}$. Use calculus to find the percentage increase in time taken when the number of items in the list is increased by 1% from 85 to 90 dems.

$$y = 4\pi \sqrt{n-4}$$

$$\frac{dy}{dx} = 6\pi - 16\pi (n-4)^{1/2}$$

$$\frac{dy}{dx} = (6\pi - 16)(n-4)^{1/2}$$

$$\frac{dy}{dx} \approx (6\pi - 16)(n-4)^{1/2} \cdot 5\pi$$

[2, 1, 4 marks] **QUESTION 9**

A POLYNOMIAL FUNCTION $f(x) = ax^4 + bx^2 + c$, where a, b and c are real constants, has the following features:

- f(x) = 0 only for x = -2 and x = 2
- f'(x) = 0 only for x = -1, x = 0 and x = 1
- f'(x) > 0 only for -1 < x < 0 and x > 1
- f''(0) < 0
- a) At the point where the curve intersects the y-axis, is it concave up or concave down? Explain your answer

Concave down F"(0) 40 /

b) Is c positive or negative? Explain your answer

regative

From -1 to 0, positive gradient

after 0, negative gradient

Doesn't cross y-oxis

c) Sketch a possible graph of the function on the axes below

V - roots V - turning points VV - gradients

Question 10 [1, 2, 3 marks]

In the accompanying diagram, S represents the position of a power relay station located on a straight coast and E shows the location of a marine biology experimental station on an island. A cable is to be laid connecting the relay station with the experimental station. The cost of running cable on land is \$1.50 per

metre and the cost of running the cable under water \$2.50 per metre. Locate the point P that will result in a minimum cost.

a) State the distance from E to P in terms of x

J3000+227

b) State the cost of the cabling in terms of x

Cost = $1.5(10000-x) + 2.5(\sqrt{3000^2 + 2c^2})$

c) Find the value of x that will minimise the cost

 $\frac{dC}{dx} = \frac{4.5x - 3\sqrt{3000^2 + x^2}}{2\sqrt{3000^2 + x^2}} = 6$ x = 44843449 2250

V - derivative V - = 0 V - Solution