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QUESTION 1  [3, 1,2, % marks]

a) If f(x) :% , evaluate f"(-1)
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b) Find g'(x), if g(x)=(1+2x-2x")(x* —1); do not simplify your answer

(og® il g 62 )+ (v 2n ~2x*)(2)

c) Use the chain rule to differentiate =
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The 1% and 2™ derivative function of a function is

shown. The x-coordinates of points where various
features of the original function occur are shown
i

below. State the nature of each of these points:
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QUESTION 2 [3, 3 marks]

3x
Consider the graph of f(x)=—;

shown below with a local minimum at A(1, 3)
X —x-2

A(1, 3)

a) Show that f'(x)= el ot
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b) Hence, or otherwise, determine the coordinates of the local maximum value of f{x).
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QUESTION 3 [3 marks]

The volume of a solid sphere is given by -3-1Ir3 where r is the radius. If the radius is increased from 2

cm to 2.1 cm, use the incremental formula to find the approximate increase in volume. Give your

answer simplified in terms of 7. \Fi= /\‘
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QUESTION 4 [1,';( 3, 2 marks)

The motion of a body is determined by x = t3 - 3t2 — 9t + 4, where x is measured in cm and t is in
seconds. Find

a) The velocity-time equation

V= % =T

b) The acceleration-time equation
a= bt Vy

¢) The time when the body is at rest
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d) The acceleration when the body is at rest
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QUESTION S5 [4 marks]

k
The graph of the function with rule y = —=—— has gradient 1 when x = 1. Find the value of £,
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QUESTION 6 [1,1, 1, 2 marks]

A flower bed is to be L-shaped, as shown in the diagram. Its perimeter is 48 m
— YN —

a) Write down an expression for the area, A m?, in terms -
of yand x Im
B= 3oy vy
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b) Find yin terms of x
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¢) Write down an expression for A in terms of x.
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d) Find the values of x and y that give the maximum area
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QUESTION 7  [3 marks)

A coat of paint of thickness 0.05 cm is to be applied uniformly to the faces of a cube of edge 30 cm.
Use calculus methods to find the amount of paint required for the job.
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QUESTION 9 [2, 4, 4 marks]

A POLYNOMIAL FUNCTION f{(x)= ax® + bx’ + ¢ , where a, b and c are real constants, has the
following features:

e f(x)=0onlyforx=-2andx=2

e f(x)=0onlyforx=-1,x=0andx=1
e f(x)>0onlyfor-1<x<0andx>1
e f’(0)<0

a) At the point where the curve intersects the y-axis, is it concave up or concave down? Explain
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b) Is c positive or negative? Explain your answer
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c) Sketch a possible graph of the function on the axes below
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Question 10  [1, 2, 3 marks]

In the accompanying diagram,
S represents the position of a
power relay station located on

a straight coast and E shows
the location of a marine

biology experimental station
on an island. A cable is to be

laid connecting the relay :
station with the experimental Land | x { 10 000 —x

S

station. The cost of running . 10 000 m

cable on land is $1.50 per

metre and the cost of running the cable under wat@ 50 per metre. Locate the point P that will

result in a minimum cost.

a) State the distance from E to P in terms of x
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b) State the cost of the cabling in terms of x )
-—

Cosh= 1.56CLooo-x) ¥ 2 -5 (lzoon? 2’

v v

¢) Find the value of x that will minimise the cost
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